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We study the dynamics of two mutually coupled chaotic oscillators with a time delayed coupling. Due to the
delay, the allowed frequencies of the oscillators are shown to be discretized. The phenomenon is observed in
the case when the delay is much larger than the characteristic period of the solitary uncoupled oscillator.
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I. INTRODUCTION

The goal of this paper is to consider the influence of delay
on the dynamics of coupled oscillators. In particular, we
study the phenomenon of discretization of frequencies,
which arises due to a delay in the coupling. The effect was
recently observed in �1� for a system of coupled lasers. The
authors there argued that it should a general property of
coupled oscillators as well. We show that this effect persists
even in the case when the oscillators are chaotic. We also
provide a more detailed description of the phenomenon using
coupled Kuramoto systems.

Dynamical properties of instantaneously coupled oscilla-
tors have been the subject of extensive research during the
last decades �2,3�. Many new collective phenomena have
been discovered and understood such as complete synchro-
nization �4�, generalized �5�, phase �6�, and lag �7� synchro-
nization, clustering �8�, etc. At the same time, the study of
coupled systems appears to be important for many practical
applications such as laser dynamics �9,10�, biology �11�, neu-
rophysiology �12�, chemistry �13�, and others.

It is evident that a delay in the coupling is common, since
coupled subsystems are usually located discretely in space.
There is also evidence that the delay can change the dynam-
ics significantly �14�. As soon as the delay becomes compa-
rable with the period of oscillations of the solitary system,
correct modeling should take it into account. The resulting
systems of coupled oscillators with delay possess new fea-
tures and exhibit new phenomena, e.g., anticipated synchro-
nization �15�. Moreover, such models are more complicated
objects to study �16,17� and determining the properties of
delay coupled systems is still a challenging problem.

Section II presents the main results of the paper using the
model of coupled Rössler oscillators. More deep analysis is
done in Sec. III, where coupled Kuramoto systems with de-
lay are considered. In particular, we show that a multistabil-
ity of the allowed frequency levels can occur via a sequence
of tangent bifurcations.

II. TWO DELAY COUPLED RÖSSLER OSCILLATORS

In this paper we consider the well studied paradigm of
Rössler oscillators, which are bidirectionally coupled,

x��t� = f�1
„x�t�… + ky�t − �� ,

y��t� = f�2
„y�t�… + kx�t − �� , �1�

where x ,y�R3 are vectors, f��x�= (−�x2−x3 ,�x1+ax2 ,b
+x3�x1−c�)T ,��0 is the delay time of the coupling, and k is
the coupling strength. Note that a similar coupling configu-
ration appears in a system describing two optically coupled
semiconductor lasers �1,10,15�.

In order to distinguish between periodic and chaotic
cases, we use c as the control parameter, which determines
the regularity of the solitary system. First, we fix a=0.15,b
=0.4, and the base frequency �=1. It is well known that
changing c one can observe a period doubling route to chaos
in a single Rössler system. Hence, in what follows, c=4 will
correspond to the periodic case and c=8.5 to the chaotic one.
For completeness, we will also consider the intemediate case
c=7, when the uncoupled oscillator with �=1.02 is periodic
and the other with �=0.98 is chaotic.

For the considered parameter values, one can introduce
phases of the oscillators in a simple geometric manner �2�.
Formally, the phases can be defined as �1�t�=arctan�x2�t�
/x1�t��+�n1�t�, �2�t�=arctan�y2�t� /y1�t��+�n2�t�, where
ni�t� are integer valued functions chosen in such a way that
�i�t� are continuous. A practical way to compute �i is to
introduce polar coordinates in Eq. �1�. The mean observed
frequencies of the oscillators are �i=limt→��i�t� / t , i=1, 2.
Synchronization properties of instantaneously ��=0� mutu-
ally coupled systems are well studied for both periodic and
chaotic systems �2�. In both cases one observes frequency
synchronization regions, which correspond to the case �1
=�2. These regions have the form of cones in the parameter
space detuning–coupling strength, i.e., ��=�1−�2 and k.
Figures 1�a�–1�c� and 2�a� illustrate the dependence of �i
and �2−�1 on �� for fixed k=0.005 and �=0. We observe
the “classical” synchronization plateau and a smooth depen-
dence of the frequencies on the control parameter.1 In Fig. 3
�left panel� we compute the corresponding Lyapunov expo-
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1In fact, the dependence of �i���� has the devil’s staircase struc-
ture. Nevertheless, it is numerically indistinguishable from a con-
tinuous function, provided there are no main resonances. The cha-
otic behavior smears the staircase structure as well.
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nents, which indicate that the dynamics for c=4 remains
regular for all values of �� while for c=7 it is chaotic. For
c=8.5 it is also chaotic except for a region of small detuning
within the synchronization domain.

The effect of the delay that we would like to report here is
illustrated in Figs. 1�d�–1�f�. We plot there the same quanti-
ties as in Figs. 1�a�–1�c� but for delay coupled oscillators.
Instead of the continuous behavior of the frequencies with
changing ��, we observe a ”quantization” effect when some
preferable values of frequencies appear which destroy the
previously continuous dependence on the parameters. �i un-
dergo jumps of magnitude � /� with varying ��. As illus-
trated in Fig. 1�d�, the allowed values of the frequencies and
the jumps are closely related to the round-trip frequency � f

=� /�. From this point of view, one can interpret this phe-
nomenon as resonances to multiples of the round-trip fre-
quency. Figure 3 �right panel� shows the largest Lyapunov
exponents for the case with delay. One can note that the case
c=4 still corresponds to a regular dynamics and c=7 and 8.5
to chaotic. Hence, the observed phenomenon takes place for
chaotic oscillators as well. Note that in the chaotic case there
are many �at least more than ten� positive Lyapunov expo-
nents which behave similarly to each other. This phenom-
enon is in agreement with recent results on delay systems
with large delay �17�.

In our simulations we choose �=3000.2 We were not able
to observe the discretization phenomenon for small values of
�, which are comparable with the characteristic period of the
Rössler oscillator �R�1, i.e., we have � /�	��
�R. Con-
sidering the coupled Kuramoto system in the next section,
we will argue for the large delay.

Figure 4 shows the evolution of the phase difference �1
−�2 for c=4 and c=8.5. In particular, in Fig. 4�a� the orbits
A, B, and C have been computed for three different values of
detuning, which correspond to three minimal allowed fre-
quencies �2−�1; cf. also the points A, B, and C in Fig. 2�b�.
It is interesting to note that phase slips in both nonsynchro-
nous cases A and B occur with the same rate, but in the case
A these slips have the magnitude 2�, while in the case B the

2In order to compute the mean frequencies, we have used the
modified Runge-Kutta fourth-order method with fixed step h=0.1.
For each parameter value, the same initial conditions have been
used, xi���=yi���=1.0, where �� �−� ,0�. The averaging has been
performed over the interval Tav=4�105�133� after the transient
Tt=2�105�67�. Lyapunov exponents have been computed using
the method described in �18�.

FIG. 1. �a�–�c� Mean frequencies �1 and �2 for instantaneously
coupled systems k=0.005,�=0. �d�–�f� The same for delay coupled
systems with �=3000 and k=0.005. Different rows correspond to
different values of c, as indicated in the figure. c=8.5 and 7 stand
for the chaotic and c=4 for the regular case.

FIG. 2. Dependence of �2−�1 on the detuning. k=0.005, c
=4. �= �a� 0; �b� 3000.

FIG. 3. Largest Lyapunov exponents as functions of ��. The
left panel corresponds to the instantaneous coupling and the right
one to the delayed case with �=3000. The dashed vertical lines
mark the parameter value at which the phase synchronization tran-
sition happens.
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magnitude of the slips is �. Figure 5 illustrates this in more
detail.

Our observations suggest that in the case with delay, tran-
sition to the phase synchronization differs from those that
occur in the instantaneous case �2�. In particular, the scaling
properties of the intervals between phase slips can be differ-
ent. We will report the scaling results elsewhere. Our analy-
sis of the phase slips indicates that the mutual synchroniza-
tion of two oscillators can be superimposed by a
synchronization of the phase slips to integer fractions of the
round-trip time.

III. DELAY COUPLED PHASE OSCILLATORS

In order to obtain an additional insight into the appear-
ance of the discretized frequency levels, let us consider the
Kuramoto model with delay,


1��t� = �1 − k sin�
1�t� − 
2�t − ��� ,


2��t� = �2 − k sin�
2�t� − 
1�t − ��� . �2�

In order to show how the dynamics of the system changes
with increasing delay, let us extend the analysis of �1�. For
simplicity, we assume that �1=−�2=� /2. The numerical
analysis of system �2� in Fig. 6 reveals the following quali-
tative features of the observed phenomenon: as the delay
increses, the continuous curve of stable nonsynchronous pe-
riodic solutions change its curvature and, at some moments,
S-shaped parts appear, which apparently indicates the ap-
pearance of tangent bifurcations. As a result of such bifurca-
tions, multistability develops with increasing delay.

Within the locking region, system �2� is known �20� to
exhibit a series of synchronized solutions of the form 
1,2
=�t±� /2, where � and � are constants. The stability and
existence of such solutions have been studied in �20�. Unfor-
tunately, we cannot apply their results here in order to sup-
port our calculations, since the described phenomenon goes
beyond the simple “constant frequency” solutions. Instead,
we would like to characterize a small neigborhood of a sta-
tionary solution using the analytical technique developed in
�17�. Particularly, we are going to show that in the neighbor-
hood of each of the constant frequency solutions, the oscil-
lations can occur only with the frequencies, which are com-
mensurable with � /� �regardless of whether they are damped
or not�. Assuming that 
1,2

0 =�t±� /2 is a solution of �2� with
some given � and �, the linearized system, which deter-
mines the stability of 
1,2

0 , reads

�1��t� = − k cos�� + ����1�t� + k cos�� + ����2�t − �� ,

�2��t� = − k cos�� − ����2�t� + k cos�� − ����1�t − �� .

�3�

As follows from �17�, the possible imaginary parts of the
critical eigenvalues are approaching asymptotically the val-
ues �H=arg��� /�+2�n /� as � becomes large. Here arg �·�
denotes the argument of a complex number and � is a zero
of the following equation:

det �k� cos�� + ��� − k cos�� + ���
− k cos�� − ��� k� cos�� − ��� � = 0. �4�

From Eq. �4� we have �= ±1. Therefore, the only possible

FIG. 4. Evolution of phase differences of delay coupled oscilla-
tors. Parameter values for �a� c=4; orbit C , �1=0.998, �2=1.002
�phase synchronized case�; B , �1=0.9962, �2=1.0038 �minimal
allowed frequency difference�; C , �1=0.9961, �2=1.0039. The
corresponding points are also indicated in Fig. 2�b�. Parameter val-
ues for �b� A1 , �1=0.9955, �2=1.0045; B1 , �1=0.9954, �2

=1.0045; C1 , �1=0.9963, �2=1.0037; D1 , �1=0.9975, �2

=1.0025.

FIG. 5. Evolution of phase differences modulo 2� for delay
coupled oscillators.

FIG. 6. Frequencies of system �2� for different values of � ver-
sus �. �a� the case with �=400; �b� �=1000. In both figures k
=0.01.
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imaginary parts for the eigenvalues are �H=� /�+�n /�,
which coinside with the detected numerically available fre-
quencies in Figs. 1�d�–1�f� and 3�b� for Rössler systems.
This is analytical evidence that there are preferred frequen-
cies in the model. A key condition for the application of the
asymptotic analysis from �17� is the assumption that the de-
lay is large ��1/ ��1−�2�. We should admit also that this
argumentation works for solutions in the vicinity of constant
frequency solutions.

IV. CONNECTION BETWEEN COUPLED OSCILLATORS
AND SYSTEMS WITH DELAYED FEEDBACK

In the following we would like to present some additional
arguments showing that the described phenomenon is ge-
neric. Let us introduce an artificial parameter k1 such that
system �1� admits the form

x��t� = f�1
„x�t�… + ky�t� + k1�y�t − �� − y�t�� ,

y��t� = f�2
„y�t�… + kx�t� + k1�x�t − �� − x�t�� . �5�

System �5� coincides with �1� if k=k1 while at k1=0 it has
instantaneous coupling. Therefore, increasing the parameter
k1 from 0 to k, the case with instantaneous coupling is trans-
formed to the delayed one. In a short form, Eq. �5� can be
written as

z� = F�z� + Kz�t� + K1�z�t − �� − z�t�� , �6�

where z= �x ,y�T, K= � 0 kI3

kI3 0 �, K1= � 0 k1I3

k1I3 0 �, and I3 is a 3

�3 unit matrix. Our main observation is that the system �6�
can be considered as the instantaneously coupled system z�
=F�z�+Kz�t� under the action of the feedback term K1�z�t
−��−z�t��. As follows from �19�, this term, under some con-
ditions, enhances the spectral properties of the solutions, e.g.,
it stabilizes periodic solutions with periods close to fractions
of �, for which the feedback term vanishes. Roughly speak-
ing, such a feedback induces a filtering of frequencies that

are close to multiples of 2� /�. Following this idea, one may
consider �6�, and hence �1� as well, as an instantaneously
coupled system, which undergoes the influence of the de-
layed feedback. As a result, the frequencies of the instanta-
neous system �see Fig. 1� are “filtered” through the delayed
feedback term and one observes an enhancing of those fre-
quencies, that are multiples of 2� /�.

V. DISCUSSION

To summarize, we report the phenomenon of frequency
discretization in systems of chaotic oscillators. A large delay
is shown to be essential for its appearance. It is still a chal-
lenging problem to show whether this phenomenon can be
detected in systems with nonisochronous attractor. The main
difficulty, which we have to face in this case, is the problem
of phase definition in such systems. As a rule, the notion of
frequency in such systems is ambiguous and can be deter-
mined up to a limited precision �see, e.g. the method from
�21��. On the other hand, the characteristic frequency split-
ting that we have observed is of the magnitude � /�. Thus,
for large �, the frequencies have to be determined with high
precision in order to resolve this phenomenon.

Note that the above mentioned conditions are very natural
for optical systems and, in particular, for semiconductor la-
sers with optical feedback �1,22�. Therefore it is not a sur-
prise that its first occurrence comes from this field �1�. Nev-
ertheless, our arguments show that this generic phenomenon
can occur in systems of completely different nature, e.g.,
biological or mechanical systems, as soon as the internal
time scales of oscillators become smaller than the time scale
of the interaction between them.
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